Petri dish filled with medium


Petri dish filled with medium
Image: FLI / Anna Schroll

Today, we are able to decipher the traits of aging at the level of cells and organisms quite precisely, using high-throughput analyses (-omics), modern imaging methods and computational tools.

Two precise and complex age prediction methods, the epigenetic clock, which exploits biochemical modifications to the genome, and BrainAGE, which uses magnetic resonance imaging to determine age-specific brain structures, are already well established.

Using these predictors, we will take the next steps towards understanding biological aging. We will use human studies and animal experiments to investigate how these markers are causally related to aging. In addition, we will investigate additional cellular and organismal aging processes to find out how these life span clocks are influenced by external factors such as diet and physical activity. A key question in IMPULS is also how psychological parameters affect biological aging.

We still know very little about this interplay, although the dependence of our well-being on age perception and attitude towards life is generally accepted nowadays. We will combine measurements of biological aging with a social science survey study on the psychological experience of aging. Our interdisciplinary research between life science, data science, and social science will lead to a breakthrough in understanding aging mechanisms.

These topics are addressed by four research areas and a collaborative project with the Leipzig University